Our
Development Methodology

Quickly jump to a topic:

Application developments

Application developments

Within our application development process, we craft dynamic driving solutions perfectly tailored to existing vehicle models. For instance, when a new BMW model is introduced to the market, we engineer a compatible chassis. Click “Discover now” to explore the process of our application development.

Our System Developments

Unlike our application developments, system developments follows a more adaptable process. Customer or internal requirements and preferences regarding our chassis technology are discussed. Then we assess potential optimization avenues. Subsequently, our engineers delve into the pre-development phase, researching chassis-specific solutions. It’s worth noting that numerous projects from the OEM sector traverse through our pre-development and system development departments.

Tools Developed In-House

Button Click Text Display
Damper Tool

With the DamperTool by KW Suspensions, damper characteristics can be displayed. This enables us to visualize the adjustment range of the damper. In addition, different setups can be simulated and compared. This is particularly helpful when tuning the vehicle on the racetrack, but also on our in-house 4-post and 7-post vehicle dynamics test bench.

Tools for Real-Life Testing

Our headquarters in Fichtenberg is not only a modern production facility for our world-famous KW automotive coilovers. It is also a development and test center for our latest applications and most complex technologies. In addition to simulations at an early stage of development, we also have many specific testing facilities. Here, the performance of the products is validated under laboratory conditions. Durability tests are carried out. So-called performance factors describe the properties of the products, which could not be more different due to KW automotive’s wide range of applications. With the combination of virtual simulations and real component tests, we make our products precisely predictable and calculable. This clearly sets us apart from the competition.

Learn more about the individual tools

Header and Description Changer

Our
Simulation methodology

There are a total of 40 developers at our headquarters in Fichtenberg with various specializations. The virtual development methodology supports us from the beginning of a development in the various development stages right through to the finished product. The field of simulations used is now very broad and ranges from FEM/CAD calculations to virtual damper design and vehicle tuning. As a result, our customers and (technology) partners end up with a product that is reliable and robust.

Advantages of a simulation

Learn more about the individual tools

Increased performance

Optimum material distribution by analyzing our products. This allows us to reduce the weight or increase the load-bearing capacity of the product.

Time saving

We save time efficiently as we can carry out virtual tests without a prototype or vehicle having to be physically present. Our customers also benefit from this.

Cost savings

Due to the time savings, we also reduce the costs incurred.

Improved product safety

Design errors are detected early and can be rectified without losses.

Improved insight into critical design parameters

Through simulation, we get a precise understanding and accurate results in areas that are not accessible with measuring equipment.

Sustainability

Without the range of simulation tools, we would not be able to save so much in terms of material, time and kilometers. This is a big plus for all players.

Tools for Virtual Simulation

Header and Description Changer

Credentials

Document
Lamborghini Squadra Corse
To the motorsport references
Audi RS5 Competition
For reference
Rimac Nevara
For reference

   Lamborghini Corse Team

     To the motorsport references

   Audi RS5 Competition

     For reference

   Rimac Nevara

     For reference

Header and Description Changer

text1

description1

Back
Next
Header and Description Changer
text1
Back
Next

Dauerlaufprüfstand

Mit dem Durchflussprüfstand lassen sich Ventile schon vor dem Einbau in den Dämpfer prüfen und optimieren. Es handelt sich hierbei um keine virtuelle Simulation, sondern um einen realen Messaufbau. Dadurch können wir Ventile ohne Störfaktoren anderer Komponenten und Eigenschaften wie Gasdruck, Reibung oder Leckage analysieren. 

Zu Beginn spannen wir das zu testende Ventil in den Prüfstand ein. Mithilfe einer Pumpe wird hydraulisches Hydraulik-Öl (identisch zu unseren Performance-Ölen in den Stoßdämpfern) durch das Ventil gepumpt. Das Öl fließt mit einem vordefinierten Volumenstrom durch das Ventil. Durch den Widerstand, den das Ventil verursacht, kommt es zu einem Druckabfall. Die Differenz des Drucks vor und nach dem Ventil ergibt die für uns relevante Dämpfkraft. Wichtig: Das hydraulische Öl läuft mit einem linear steigenden Volumenstrom von 0l bis 40l pro Minute (max. 130 bar) durch das Ventil. Durch die kontinuierliche Steigung sieht man, wie sich der Druckabfall ändert. Mit diesem Tool versuchen wir, die Komplexität der Ventile zu verstehen. Darüber hinaus können wir so die idealen Parameter einstellen und unsere Anwendungsmöglichkeiten herausfinden.

Vorteile:

Dauerlaufprüfstand

Bei der Entwicklung führen wir objektive und subjektive Beurteilungen durch. Bei der objektiven Beurteilung machen wir uns im Fahrversuch mithilfe von Datenlogging ein Bild. Das bedeutet, dass wir nicht nur objektiv mithilfe von Messdaten unseres Fahrdynamikprüfstandes arbeiten, sondern auch Fahrten auf dem Prüfgelände bzw. auf Rennstrecken durchführen. 

In der subjektiven Beurteilung besitzen wir dank unserer Anwendungsentwicklungen bereits viel Erfahrung. Dies ergibt sich aus der Expertise unserer Mitarbeiter aus der Werkstatt, Systementwicklung, Anwendungsentwicklung, technischer Support, Federn, Rad-/Adaptersysteme, Projektleitung und vielen weiteren Positionen. Darüber hinaus haben wir in den mehreren Jahrzehnten, in denen wir praktizieren, viele OE-Projekte begleitet. Auch hier wurde immer wieder viel Wert auf unsere Fahreindrücke gelegt. Wir sind daher in der Lage, sowohl datenbasiert als auch durch reale Probefahrten und Fahrerfeedback Projekte zu unterstützen.

Dauerlaufprüfstand

Um sicherzustellen, dass wir das ideale Dämpfersetup erarbeitet haben, führen wir Langzeittests unter jederzeit reproduzierbaren Laborbedingungen durch. Dadurch stellen wir sicher, dass finale Kennlinien und Dämpfereigenschaften auch noch nach intensiver Nutzung (z.B. 24h-Rennen oder einem durchschnittlichen Fahrzeugleben) in Ordnung sind und es zu keinen Ausfällen kommt. Zur Testung nutzen wir zwei servohydraulische Prüfanlagen. Je nach künftigem Einsatzzweck unterscheiden sich die Anlagen in ihren Eigenschaften. 

Für Straßenanwendungen nutzen wir eine Prüfanlage der Firma Schenk. Hier können bis zu vier Prüflinge zeitgleich geprüft werden. Der eingesetzte Hydraulikzylinder erreicht eine Geschwindigkeit von bis zu 1,75 m/s bei einer Nennkraft von 40 Kilonewton. Anforderungen aus dem Offroadbereich und weitere Anwendungsfelder im Bereich der Energieabsorption erfordern eine deutlich größere Absicherung der Produkteigenschaften. Hier setzt die KW automotive auf einen Sonderprüfstand der Firma Inova. Erreichbare Geschwindigkeiten liegen bei über 7 m/s und maximal 300 mm Hub (Nennkraft bei 100 Kilonewton). Um diese Werte zu erreichen, benötigt es einen spezifischen Hydraulikzylinder, ein performantes Pumpenaggregat und Druckspeichereinheiten. Das gesamte Powerpack liefert während Peak Anregungen bis zu 1.200 Liter Hydraulik-Öl pro Minute. Die Leistungsaufnahme des Motors liegt bei über 120 kW. Zusätzlich nutzen wir die Anlagen nicht nur für den Dauerlauf, sondern auch bei der Bewertung der Akustik und Geräuschanalyse unserer Produkte. Durch diese aufwändigen Prüfungen profitieren unsere Kunden von maximal zuverlässigen Produkten.

Der 7-Post Fahrdynamikprüfstand

Unser Fahrdynamikprüfstand vom BAR-Honda F1-Team ist seit 2008 Teil des KW automotive Stammsitzes in Fichtenberg. Mit diesem positionieren sich die Geschäftsführer Klaus und Jürgen Wohlfahrt als innovative Vorreiter und wertvolle Entwicklungspartner innerhalb der Fahrwerksbranche. 

Seither hat sich innerhalb der Unternehmung ein Team aus Ingenieuren und Technikern etabliert, das verschiedenste Parameter wie Aufbauresonanz-Frequenzen, Dämpfungsgrad, Nickverhalten, Aufbaubewegung, dynamisches Fahrzeugniveau und Radlastschwankungen gewinnbringend auswertet. 

Inzwischen bietet unser Fahrdynamikprüfstand zahlreichen erfolgreichen und international agierenden Motorsportteams und Automobilherstellern einen großen Mehrwert. Wir sind eng beteiligt an der Optimierung der Fahrwerkslösungen unserer geschätzten Kunden und Partner. Dadurch erhalten wir den Innovationsgeist in der Fahrwerksbranche und arbeiten täglich aktiv daran mit.

Virtueller 4-Post

Mit unserem virtuellen 4-Post ermitteln wir anhand von spezifischen Fahrzeugdaten und den gewünschten Fahreigenschaften passende Federrate, sowie die dazugehörigen Dämpfungscharakteristiken für ein Fahrzeug. 

Mit dem virtuellen 4-Post können wir bereits vor der Produktion unsere Dämpfer auf die gewünschten Zielwerte adaptieren. Final ermittelte Kennlinien können wir aus der Software exportieren. Dadurch sind wir in der Lage, uns mit unseren Kunden abzustimmen oder die simulierten Werte mit den real gemessenen Werten auf dem Dämpferprüfstand abzugleichen. Bereits vorhandene Dämpfungskennlinien können ebenfalls importiert und simuliert werden.

Software

Virtueller 4-Post

Strukturmechanische Analysen (FEM)

Mit dem Durchflussprüfstand lassen sich Ventile schon vor dem Einbau in den Dämpfer prüfen und optimieren. Es handelt sich hierbei um keine virtuelle Simulation, sondern um einen realen Messaufbau. Dadurch können wir Ventile ohne Störfaktoren anderer Komponenten und Eigenschaften wie Gasdruck, Reibung oder Leckage analysieren. 

Im Rahmen der Strömungssimulation prüfen wir die Bauteilfestigkeit. So kann bereits vor der Produktion validiert werden, ob der Dämpfer belastbar genug ist. Reichen die Anforderungen nicht, kann dank der Simulation genau benannt werden, welches Bauteil überarbeitet werden muss.

Hier führen wir folgende, beispielhafte Simulationen durch:

Zudem führen wir Topologieanwendungen durch. Hierbei handelt es sich um ein Verfahren zur Optimierung von Formen anhand algorithmischer Modelle. Auf Basis unserer vordefinierten Vorgaben für Belastung, Bedingung und Einschränkung können wir mithilfe des Verfahrens das bestmögliche Materiallayout ermitteln, beispielsweise bei unseren Spurverbreiterungen. 

Bei der Dauerfestigkeitsprüfung testen wir die Zuverlässigkeit unserer Produkte. Die Analyse von Ermüdungsfehlern hilft uns, Fehlerquellen zu identifizieren und dadurch Produktfehlfunktionen zu verhindern. Dadurch sind wir in der Lage, unsere Konstruktionen hinsichtlich ihrer Verlässlichkeit und Leistung zu optimieren.

Tools

Ansys ist eine Software für Festigkeits- und Strömungssimulationen. Es gilt als state-of-the-art Framework am derzeitigen Markt. Mit dem Simulationstool Ansys sind unsere Ingenieure in der Lage, die Lücke zwischen Design und Realität zu schließen. Hiermit ist es möglich, noch vor der Produktion zu sehen, wie ein Produkt unter verschiedensten Einflüssen performt.

Dauerlaufprüfstand

Mit dieser virtuellen Simulation wird eine elektromagnetische Baugruppe auf magnetische, elektrische und mechanische Eigenschaften geprüft. Anschließend wird dieses in ein vereinfachtes CAD-Modell übertragen. Der Ausgangspunkt der Simulation elektromagnetischer Ventile ist der Wunsch, ein mechanisches Ventil, um einen Elektromagnet zu erweitern. Hierfür wird Strom mithilfe einer Spule in das Bauteil geschickt. Dadurch entsteht ein Magnetfeld, das Pole ausbildet. Diese Pole ziehen sich gegenseitig an. Um zu verstehen und vorherzusagen, wie die Energiewandlung zur Kraft stattfindet, wird ein digitaler Zwilling vom Bauteil in der Simulationssoftware JMAG erstellt. 

Dem digitalen Modell werden Daten (Materialdaten, geografische Lage des Materials, Art des Bauteils) hinzugefügt. Das soll am Ende Aufschluss darüber geben, wie sich das Material verhält, wenn es von Magnetfeldern durchdrungen wird. Mithilfe von physikalischen Gesetzen und Gleichungen machen wir die Simulation berechenbar. 

Um Lösungen zu finden und Parameter vorherzusagen, findet die Diskretion statt. Hierbei wird das große, komplexe Gesamtmodell in viele kleine, weniger komplexe Teilmodelle aufgelöst. Jedes kleine Teilmodell kann individuell berechnet werden und berücksichtigt zeitgleich die Daten der anderen Teilmodelle. Dadurch können gegebenenfalls auftretende Probleme wesentlich einfacher und schneller lokalisiert werden.

Aus der Summe der Berechnung dieser vielen einzelnen Teilmodelle können wir am Ende genau bestimmen, wie sich diese Modelle gegenseitig beeinflussen und wie diese auf das Magnetfeld reagieren. Die Teilmodelle werden zusammengesetzt und es wird eine Lösung gebildet. Zum Schluss erfolgt das Post-Processing und die Validierung. Hier bereiten die Ingenieure die Daten auf und geben dem Kunden Handlungsvorschläge auf Basis der errechneten Daten.

Software

JMAG

Vorteile:

Strömungssimulation (CFD)

Der Begriff „CFD“ steht für Computational Fluid Dynamics. Hier werden numerische Methoden zur näherungsweisen Lösung strömungsmechanischer Probleme angewendet. Dadurch lassen sich technische Abläufe innerhalb eines Bauteils untersuchen und visualisieren. 

Die Messung des Druckabfalls dient der Anpassung der Durchfluss-Druck-Kurve eines Druckstufen- oder Zugstufenventils. Bei der Messung der Geräuschbildung (Turbulenz) wird mithilfe eines analytischen Ansatzes der Lärm abgeschätzt, der durch turbulente Strömungen erzeugt wird. 

Die Messung des Unterdrucks (Kavitation) simuliert Dampfblasen innerhalb einer Flüssigkeit in Niederdruckbereichen. Diese treten an Orten auf, an denen die Flüssigkeit auf hohe Geschwindigkeiten beschleunigt wurde.

Tools

Der Begriff „CFD“ steht für Computational Fluid Dynamics. Hier werden numerische Methoden zur näherungsweisen Lösung strömungsmechanischer Probleme angewendet. Dadurch lassen sich technische Abläufe innerhalb eines Bauteils untersuchen und visualisieren. 

Endurance Test Bench

The flow test bench can be used to test and optimize valves before they are installed in the damper. This is not a virtual simulation, but a real measurement setup. This allows us to analyze valves without interference from other components and properties such as gas pressure, friction or leakage.

We start by clamping a valve in the test bench. A pump is used to pump hydraulic oil (identical to our performance oils in the shock absorbers) through the valve. The oil flows through the valve at a predefined flow rate. The resistance caused by the valve results in a pressure drop. The difference in pressure before and after the valve is the damping force that is relevant for us. Important: The hydraulic oil runs through the valve with a linearly increasing volume flow of 0 l to 40 l per minute (max. 130 bar). The continuous gradient shows how the pressure drop changes. With this tool we try to understand the complexity of the valves. It also allows us to set the ideal parameters and find out our application possibilities.

Advantages:

Objective and Subjective Assessment

During development, we carry out objective and subjective assessments. In the objective assessment, we use data logging to get an idea of the driving test. his means that we not only work objectively with the help of measurement data from our 7-post rig, but also carry out test drives on the streets and racetracks.

Thanks to our application developments, we already have a great deal of experience in subjective assessment. This results from the expertise of our employees from the workshop, system development, application development, technical support, springs, wheel/adapter systems, project management and many other positions. In addition, we have accompanied many OE projects in the several decades in which we have been practicing. Here, too, we have always attached great importance to our driving impressions. We are therefore able to support projects based on data as well as real test drives and driver feedback.

Endurance Test Bench

To ensure that we have developed the ideal damper setup, we carry out long-term tests under laboratory conditions that can be reproduced at any time. This ensures that the final characteristic curves and damper properties are still good even after extreme use (e.g. 24-hour races or an average vehicle life) and that there are no failures. We use two servo-hydraulic test systems for testing. The characteristics of the systems differ depending on their future purpose.

For road applications, we use a test system from Schenk. Here, up to four test specimens can be tested simultaneously. The hydraulic cylinder used achieves a speed of up to 1.75 m/s with a nominal force of 40 kilonewtons. Requirements from the off-road sector and other fields of application in the area of energy absorption require significantly greater assurance of product properties. This is where KW automotive relies on a special test bench from Inova. Achievable speeds are over 7 m/s and a maximum stroke of 300 mm (nominal force at 100 kilonewtons). To achieve these values, a specific hydraulic cylinder, a high-performance pump unit and pressure accumulator units are required. The entire power pack delivers up to 1,200 liters of hydraulic oil per minute during peak excitation. The power consumption of the motor is over 120 kW. In addition, we use the systems not only for continuous operation, but also to evaluate the acoustics and noise analysis of our products. Thanks to these extensive tests, our customers benefit from products with maximum reliability.

The 7-Post Driving Dynamics Test Bench

Our vehicle dynamics test bench from the BAR-Honda F1 team has been part of the KW automotive headquarters in Fichtenberg since 2008. With this, the managing directors Klaus and Jürgen Wohlfarth have positioned themselves as innovative pioneers and valuable development partners within the suspension industry. 

Since then, a team of engineers and technicians has established within the company, which profitably evaluates a wide range of parameters such as body resonance frequencies, damping level, pitching behavior, body movement, dynamic vehicle level and wheel load fluctuations.

Our vehicle dynamics test bench now offers great added value to numerous successful and internationally active motorsport teams and car manufacturers. We are closely involved in optimizing the suspension solutions of our valued customers and partners. In this way, we maintain the spirit of innovation in the chassis industry and actively contribute to it on a daily basis.

Virtual 4-Post

With our virtual 4-post, we use specific vehicle data and the desired driving characteristics to determine the appropriate spring rate and the corresponding damping characteristics for a vehicle.

With the virtual 4-post, we can adapt our dampers to the desired target values even before production. We can export the final characteristic curves from the software. This enables us to coordinate with our customers or to compare the simulated values with the real values measured on the damper test bench. Existing damping characteristics can also be imported and simulated.

Software

Virtual 4-Post

Structural mechanical analyses (FEM)

The flow test bench can be used to test and optimize valves before they are installed in the damper. This is not a virtual simulation, but a real measurement setup. his allows us to analyze valves without interference from other components and properties such as gas pressure, friction or leakage.

We test the component strength as part of the flow simulation. This allows us to validate whether the damper is resilient enough before production. If the requirements are not sufficient, the simulation can be used to determine exactly which component needs to be reworked.

Here we carry out the following exemplary simulations:

We also carry out topology applications. This is a process for optimizing shapes using algorithmic models. Based on our predefined specifications for load, condition and restriction, we can use the process to determine the best possible material layout, for example for our wheel spacers.

We test the reliability of our products during fatigue strength testing. Fatigue failure analysis helps us to identify sources of error and thus prevent product malfunctions. This enables us to optimize our designs in terms of reliability and performance.

Tools

Ansys is a software for strength and flow simulations. It is considered the state-of-the-art framework on the current market. With the Ansys simulation tool, our engineers are able to close the gap between design and reality. This makes it possible to see how a product will perform under a wide range of influences even before it goes into production.

Magnetic Circuit Simulation for our Electromagnetic Valves

This virtual simulation is used to test the magnetic, electrical and mechanical properties of an electromagnetic assembly. This is then transferred to a simplified CAD model. The starting point for the simulation of electromagnetic valves is the desire to add an electromagnet to a mechanical valve. To do this, electricity is sent into the component using a coil. This creates a magnetic field that forms poles. These poles attract each other. In order to understand and predict how the energy conversion to force takes place, a digital twin of the component is created in the JMAG simulation software.

Data (material data, geographical location of the material, type of component) is added to the digital model. This should ultimately provide information on how the material behaves when penetrated by magnetic fields. We use physical laws and equations to make the simulation calculable.

Discretization is used to find solutions and predict parameters. Here, the large, complex overall model is broken down into many small, less complex sub-models. Each small sub-model can be calculated individually and simultaneously takes into account the data of the other sub-models. This makes it much easier and quicker to localize any problems that may arise.

From the sum of the calculation of these many individual sub-models, we can ultimately determine exactly how these models influence each other and how they react to the magnetic field. The sub-models are put together and a solution is formed. Finally, post-processing and validation takes place. This is where the engineers prepare the data and provide the customer with suggestions for action based on the calculated data.

Software

JMAG

Advantages:

Computational Fluid Dynamics (CFD)

The term “CFD” means Computational Fluid Dynamics. Here, numerical methods are used for the approximate solution of fluid mechanical problems. This allows technical processes within a component to be investigated and visualized.

The measurement of the pressure drop is used to adjust the flow-pressure curve of a compression or rebound valve. When measuring turbulence, an analytical approach is used to estimate the noise generated by turbulent flows.

The measurement of negative pressure (cavitation) simulates vapor bubbles within a liquid in low-pressure areas. These occur in places where the liquid has been accelerated to high velocities.

Tools

The term “CFD” means Computational Fluid Dynamics. Here, numerical methods are used for the approximate solution of fluid mechanical problems. This allows technical processes within a component to be investigated and visualized.

Kontaktformular

(*) Pflichtfeld
(*) Pflichtfeld
Marken
Heading #2
Heading #3
Simple content
Simple content

Select your brand!

Contact us on our social media accounts like Facebook or Instagram.

Select your brand!

Visit our brand websites to start your chat.

Wähle eine Marke aus!

Kontaktiere uns einfach und bequem über unsere Social Media Kanäle.

Wähle eine Marke aus!

Auf unseren Markenseiten findest du den Chat zu deinem Ansprechpartner.

Impressum

KW automotive GmbH
Aspachweg 14
D-74427 Fichtenberg

Telefon:+49 (0) 7971 9630-0

Telefax:+49 (0) 7971 9630-191

E-Mail: info@kwautomotive.de

 

Vertretungsberechtigte Geschäftsführer:

Klaus Wohlfarth, Jürgen Wohlfarth

 

Registergericht:

Amtsgericht Stuttgart

 

Registernummer:

HRB 571255

 

Umsatzsteuer-Identifikationsnummer
gemäß § 27 a Umsatzsteuergesetz: DE 812 382 653

 

Verbraucherinformation gemäß Verordnung (EU) Nr. 524/2013:
Nachfolgend finden Sie den Link zur OS-Plattform der EU-Kommission: https://ec.europa.eu/consumers/odr/.

Unsere E-Mailadresse lautet: info@kwautomotive.de.

 
Streitbeilegungsverfahren:
Wir nehmen nicht an einem Streitbeilegungsverfahren vor einer Verbraucherschlichtungsstelle teil. https://ec.europa.eu/consumers/odr/.